THE COLLEGE OF THE BAHAMAS

EXAMINATION

SEMESTER 04-2002

FACULTY OF PURE AND APPLIED SCIENCES

SCHOOL OF NATURAL SCIENCES AND ENVIRONMENTAL STUDIES

X NASSAU FREEPORT EXUMA ELEUTHERA

DATE AND TIME OF EXAMINATION: Thursday, December 5, 2002 at 7 p.m.

DURATION: 3 HOURS

COURSE NUMBER: CHEM 230

COURSE TITLE: ORGANIC CHEMISTRY

STUDENT NAME:

STUDENT NUMBER:

LECTURER'S NAME:

INSTRUCTIONS TO CANDIDATES: This paper has 7 pages and 14 questions. Answer ALL questions in the spaces provided on the examination paper. The use of calculators are allowed during this examination.

PERIODIC TABLE OF THE ELEMENTS

1 H 1-0	11											111	IV	V	VI	VII	0 2 He 4·0
3 Li 6-9	4 Be 9-0											5 B 10-8	6 C 12·0	7 N 14-0	8 O 16·0	9 F 19· 0	10 Ne 20·2
11 Na 23-0	12 Mg 24·3											13 Al 27-0	14 Si 28·1	15 P 31·0	16 S 32·1	17 Cl 35·5	18 Ar 39-9
19 K 39∙1	20 Ca 40·1	21 SC scandium 45·0	22 Ti titanium 47·9	23 V vanadium 50-9	24 Cr chromium 52-0	25 Mn manganese 54 · 9	26 Fe iron 55·8	27 Co cobalt 58·9	28 Ni nickel 58·7	29 Cu copper 63·5	30 Zn zinc 65·4	31 Ga galium 69·7	32 Ge germanium 72-6	33 As arsenic 74·9	34 Se selenium 79-0	35 Br bromine 79-9	36 Kr krypton 83∙8
37 Rb rubidium 85·5	38 Sr srontium 87 · 6	39 Y yttrium 88-9	40 Zr zirconium 91 · 2	41 Nb niobium 92·9	42 Mo molybdenum 95-9	43 Tc technetium 98 9	44 Ru ruthenium 101·1	45 Rh rhodium 102-9	46 Pd paladium 106-4	47 Ag silver 107·9	48 Cd cadmium 112·4	49 In indium 114·8	50 Sn tin 118-7	51 Sb antimony 121 · 8	52 Te tellurium 127·6	53 iodine 126 • 9	54 Xe xenon 131·3
55 Cs cesium 132-9	56 Ba barium 137·3	57 La lanthanum 138-9	72 Hf hafnium 178·5	73 Ta tantalum 180·9	74 W tungsten 183 · 85	75 Re rhenium 186·2	76 Os osmium 190·2	77 Ir iridium 192·2	78 Pt platinum 195·1	79 Au gold 197∙0	80 Hg mercury 200-6	81 TI thallium 204 · 4	82 Pb lead 207·2	83 Bi bismuth 209-0	84 Po pollonium	85 At astatine	86 Rn radon
87 Fr francium	88 Ra radium	89 Ac actinium		·													
	58 C € ceriu)	59 Pr eodymium	60 Nd neodymium	61 Pm promethium	62 Sm samari		63 Eu uropium	64 Gd gadolinium	65 Tb terbium	66 Dy dyspros	!	67 Ho holmium	68 Er erbium	69 Tm thulium	70 Yb ytterbiu	
	90 Th thoriu	1	91 Pa oactinium	92 U uranium	93 Np neptunium	94 Pu plutoni		95 Am nericium	06 Cm curium	97 Bk berkelium	98 Cf californ	:	99 Es einsteinium	100 Fm fermium	101 Md mendelevium	102 No nobeliu	Lr

1. Circle and name all of the functional groups in the following molecules. It is not necessary to circle alkane groups.

[5 marks]

2. Draw the complete Lewis structure for the following molecules showing all non-bonding electrons.

[4 marks]

- (b) HCO_3
- (c) HC1
- (d) methanoic acid

3. Explain (using curved arrow mechanisms) the product ratio given. Remember to account for the formation of the minor product as well as the major product.

[6 marks]

4. Clearly indicate the hybridization of the carbon, oxygen and nitrogen atoms highlighted in the following molecules.

[6 marks]

- (a)

5. Give systematic names including stereochemical designations (R, S, cis or trans) when required for the following molecules:

[4 marks]

(a)
$$H_{3}C$$
 $CH_{2}OH$

6. Assign priority numbers to the following groups. Let the number 4 represent the group of lowest priority and the number 1 represent the group of highest priority.

[4 marks]

(a) -CH₂OH

CH₂CH₂OH

- (b)
- ·OH
- CH₃
- ·CH₂OH

CH(CH₃)₂ (c)

·CH₂CH₂Br

- CH2CH2CH2Br

- (d)
- CH₂CH₃
- ·CH₃

7. Mark each stereocenter (chirality center) in the following seven molecules with an asterisk. How many stereoisomers are possible for each molecule? Ensure that your asterisks are not ambiguously placed. You will lose 0.25 marks for each incorrectly labeled carbon.

[9 marks]

CH₃CH(OH)CH(OH)COOH

8. Draw the chemical structure showing stereochemical designations (R, S, cis or trans) where required for the following:

[5 marks]

- (a) (3R)-3-bromopentanamide
- (b) (2R,3R)-2-ethyl-3-fluoroheptanal
- (c) cis-2-octene
- (d) 2,4,6-trinitrotoluene
- (e) 3,3-dimethylcyclopentene

9. The specific rotation of pure (R)-(+)-glyceraldehyde is +8.7°. The observed specific rotation of a mixture of (R)-glyceraldehyde and (S)-glyceraldehyde is +3.40°.

[5 marks]

(a) What is the enantiomeric excess (%ee) of the mixture?

(b) What percent of (R)-(+)-glyceraldehyde is present in the mixture?

10. Insert all necessary reagents and conditions in the boxes to complete the following transformations. Mechanisms of the reactions and names of the structures are NOT required.

[4 marks]

(a)
$$CH_3$$
 CH_3 CH_3 CH_2CH_3

Z

Page 5 of 7

X

	molecules		[6 marks]
	(a)	(3S,4R)-3-bromo-3,4-dimethylhexane and	
		(3R,4R)-3-bromo-3,4-dimethylhexane	
	(b)	(3S,4R)-3-bromo-3,4-dimethylhexane	
		and (3R,4S)-3-bromo-3,4-dimethylhexane	
		H ÇH ₂ CH ₃	
	(c)	H ₃ C OH and H OH	
		CI H CI H	
	(d)	and H CICI H	· · · · · · · · · · · · · · · · · · ·
	(e)	Cl H Cl H Cl Cl H H	
		CH ₃ HO C and CH CH CH CH CH CH3	
	(f)	HO CH ₂ CH ₂ CH ₃ CH ₃ CH ₂ CH ₂ H	water and the control of the control
12.	CrO ₃ /H ₂ Se <i>i.e.</i> , the so stereogenic chemical s	d X (C ₈ H ₁₈ O) gave a negative result, <i>i.e.</i> , the solution rema O ₄ solution. When X reacted with H ₃ PO ₄ product Y was i lution changed colour from purple to brown to colourless. c carbons. When Y was treated with ozone, 2-butanol was structures for X, Y and Z. There are 2 possible structures	solated. Y gave a positive test with KMnO ₄ , Reaction of Y with H ₂ /Pt gave Z that had two s the only product identified. Draw the
	only requi	red to give one of the possible structures.	[6 marks]
	•		•

13. A chemistry student (who obviously did not take Chemistry 230) attempted to make *p*-propylacetophenone (compound **U**) with 1-chloropropane under Friedel-Crafts alkyalation conditions. The only product isolated was *m*-propylacetophenone (compound **W**).

(a) How can you account for fact that the student did not produce any of the desired *p*-propylacetophenone (**V**) but instead made *m*-propylacetophenone (**W**)? Curved arrow mechanisms combined with a few sentences may be your best approach to providing a complete answer to this question.

[8 marks]

(b) Using any reagents you desire how can you prepare a sample of *p*-ethylacetophenone (product **U**) starting from benzene? You are NOT required to show mechanisms for this part of the question.

[4 marks]

14. Draw structures, showing stereochemistry when relevant, for the products for the following reactions. Mechanisms of the reactions and names of the structures are NOT required.

[10 marks]

(c)
$$F + NaOCH_3 \xrightarrow{CH_3OH}$$

(d)
$$CH_3$$
— C — OH + CH_2OH H^+

(e) + SOCl₂
$$\longrightarrow$$
 CH₂CH₃

(h)
$$PO_2$$
 + PO_2

****** End of Examination *******