SECTION A: MULTIPLE CHOICE. For each question, select the most appropriate answer, and shade the letter corresponding to this answer on the answer sheet provided.

Consider the gas phase reaction: $a A + b B \rightarrow c C + d D + e E$. 1. The rate law is: Rate = $k[A]^q [B]^r$.

Which statement is **false**?

- The exponents, q and r, are often integers. A
- The exponents, q and r, are always equal to the coefficients a and b В respectively.
- The exponents, q and r, must be determined experimentally. C
- The overall reaction order is q + r. D
- The symbol, k, represents the rate constant. E
- For the reaction: $6 \text{ CH}_2\text{O} + 4 \text{ NH}_3 \rightarrow (\text{CH}_2)_6\text{N}_4 + 6 \text{ H}_2\text{O}$ 2. the rate is expressed as $-\frac{1}{6} \frac{\Delta [CH_2O]}{\Delta t}$. An equivalent expression is

A
$$-\frac{1}{4}\frac{\Delta[NH_3]}{\Delta t}$$

$$\mathbf{B} + \frac{1}{4} \frac{\Delta [NH_3]}{\Delta t}$$

$$C \qquad -\frac{6}{4} \frac{\Delta [NH_3]}{\Delta t}$$

D
$$+\frac{6}{4}\frac{\Delta[NH_3]}{\Delta t}$$

$$E \qquad -\frac{4}{6} \frac{\Delta [NH_3]}{\Delta t}$$

For the decomposition of nitrosyl chloride, $\Delta H = +38 \text{ kJ mol}^{-1}$. 3.

 $NOCl(g) \rightarrow NO(g) + \frac{1}{2}Cl_2(g)$

The activation energy for this reaction is 100 kJ mol⁻¹. The activation energy for the reverse reaction is

- 38 kJ A
- В 62 kJ
- 76 kJ \mathbf{C}
- 100 kJ D
- 138 kJ E
- Most reactions are more rapid at higher temperatures than at lower temperatures. 4. This is consistent with
 - an increase in the rate constant with increasing temperature. 1.
 - an increase in the activation energy with increasing temperature. 2.
 - an increase in the percentage of "high energy" collisions with increasing 3. temperature.

Which of the given choices is/are correct?

- 1 only.
- 2 only. В
- C 3 only.
- 1 and 3. D
- 1, 2 and 3. E

For the elementary reaction: $2 P + Q \rightarrow R + S$ 5. the rate law must be $R = k[P]^2[Q]$ R = k[P][Q]В C R = k[P][Q] $R = k[P]^2$ D determined by experiment. Ē The gas phase decomposition of N₂O₅ is a first order process. The 6. decomposition reaction is: $N_2O_5 \rightarrow 2 NO_2 + \frac{1}{2} O_2$. $10.0~g~of~N_2O_5$ are placed in vessel 1 and $5.0~g~N_2O_5$ in vessel 2. The vessels are at the same temperature and pressure. How much time is required for half of the N₂O₅ decompose in each vessel? Vessel 1 requires twice as much time as vessel 2. Vessel 2 requires twice as much time as vessel 1. В Vessel 1 requires four times as much time as vessel 2 \mathbf{C} Vessel 2 requires four times as much time as vessel 1. D Vessel 1 requires as much time as vessel 2. The equilibrium constant for the reaction $A + 2 B \rightleftharpoons C + 5/2 D$ is 4.0. 7. What is the value of the equilibrium constant for the reaction $2 C + 5 D \rightleftharpoons 2 A + 4 B$ at the same temperature? 0.25 A В 16 C 2.0 8.0 D 0.063 E Questions 8 and 9. At a given temperature, 0.012 mol NO, 0.008 mol Cl₂, and 0.020 mol NOCl were placed in a 1.0 dm³ container. The following equilibrium was established: $2 \text{ NOCl } (g) \rightleftharpoons 2 \text{ NO } (g) + \text{Cl}_2 (g)$. At equilibrium 0.024 mol NOCl was present. How many moles of Cl₂ were present at equilibrium? 8. 0.002 A 0.004 В C 0.006 800.0 D E 0.010 What is the value of the equilibrium constant, K_c? 9. 4.45×10^{-4} Α 6.67 x 10⁻⁴ В \mathbf{C} 0.111 0.167 D E 1500 In a reversible chemical reaction at constant temperature, the addition of a catalyst 10. increases the value of the equilibrium constant. Α increases the kinetic energy of the reacting molecules. В

decreases the enthalpy change for the forward process.

has no effect on equilibrium position.

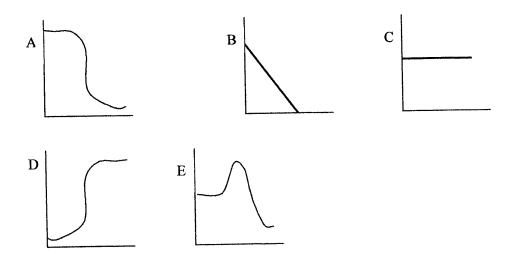
increases the concentration of the products at equilibrium.

C

D

- Solid HgO, liquid Hg, and gaseous O2 are placed in a glass bulb and allowed to 11. reach equilibrium at a constant temperature. $2 \text{ HgO (s)} \rightleftharpoons \text{Hg (l)} + \text{O}_2 \text{ (g)}. \Delta H = +43.3 \text{ kcal}.$ The mass of Hg in the bulb can be increased by adding some HgO. В adding some O2. reducing the volume of the bulb. C D lowering the temperature. E removing some O2. Dinitrogen tetroxide dissociates to nitrogen dioxide: 12. $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$. At 25^{0} C, $0.11 \text{ mol } N_{2}O_{4}$ reacts to form $0.10 \text{ mol } N_{2}O_{4}$ and $0.02 \text{ mol } NO_{2}$ at equilibrium At 90°C, 0.11 mol N₂O₄ reacts to form 0.50 mol N₂O₄ and 0.12 mol NO₂ at equilibrium. From this data, it can be concluded that N₂O₄ molecules react by a second order rate law. A N₂O₄ molecules react by a first order rate law. В C the reaction is endothermic. the equilibrium constant for the reaction decreases with an increase in D temperature. $N_2 \hat{O_4}$ molecules react faster at 25^0C than at 90^0C . E 13. Which set does not constitute an acid/base conjugate pair? Α HCOOH/HCOO. \mathbf{B} H₂O/OH \mathbf{C} H₃O⁺/H₂O H₃PO₄/HPO₄² D E HCI/CI 14. The pH of 0.002 M KOH is closest to A 11.3 В 2.7 C 2 D 12 \mathbf{E} 14 Which of the following is the weakest acid? 15. HClO₄ A HClO₃ В C HClO₂ D **HClO** E HCl Questions 16 and 17 concern the following salts. NH₄Cl A В K₂CO₃ \mathbf{C} FeCl₃ Fe(NO₃)₂ D NaCl
 - 16. Which salt, when added to water, will **not** change the pH?
 - 17. Which salt, when added to water, will increase the pH?

18.	A 1.0 M aqueous solution of a weak acid, HX, has a pH of 4. What is the percent dissociation of HX in the solution?		
	\mathbf{A}^{-1}	10 %	
	В	1.0 %	
	Č	0.10 %	
	Ď	0.01 %	
	Ē	0.001	
19.	A 7.2×10^{-3} M solution of ethanoic acid is 5 % dissociated. In a 7.2×10^{-4} M solution, the percent dissociation would be		
	A	5 %	
	В	< 5 %	
	C	> 5 %	
		100 %	
	E	0 %	
20.	A 7.2×10^{-3} M solution of ethanoic acid is 5 % dissociated. What is the pH of the solution?		
	Α	5.0	
	В	2.1	
	C	3.4	
	D	0.0036	
	E	7.0	
21.	Which statement is true of the titration of a weak monoprotic acid with the strong base, sodium hydroxide?		
	Α	At the equivalence point, the pH is 7.	
	В	At the equivalence point the solution is acidic.	
	C	At the equivalence point the number of moles of acid is greater than the	
		number of moles of the base.	
	D	At the equivalence point the number of moles of the base is greater than	
		the number of moles of the acid.	
	Е	At the equivalence point the number of moles of acid is equal to the number of moles of the base.	
22.	To 1.0 dm ³ of water, 2.0×10^{-6} mol Pb(NO ₃) ₂ , 6.0×10^{-6} mol K ₂ CrO ₄ and 1.0 mol NaCl are added. Which precipitate will form? $K_{sp}(PbCrO_4) = 1.0 \times 10^{-16}$; $K_{sp}(PbCl_2) = 2.0 \times 10^{-5}$		
	A	PbCl ₂	
	A B	PbCrO ₄	
	C	Both PbCl ₂ and PbCrO ₄	
	D	KCl	
	E	Na ₂ CrO ₄	
	Questions 23 - 25 concern the reactions:		
	A	$Cl_2 + H_2O \rightarrow HCl + HOCl$	
	В	$2 \text{ Na} + \text{H}_2\text{O} \rightarrow 2 \text{ NaOH} + \text{H}_2$	
	С	$CaO + SiO_2 \rightarrow CaSiO_3$	
-41	D	$NH_4NO_3 \rightarrow N_2O + 2 H_2O$	
	E	$H_2 + Cl_2 \rightarrow 2 HCl$	
	23.	Which is <u>not</u> a redox reaction?	
	24.	Which is a disproportionation reaction?	
	25.	In which reaction is the oxidation number of hydrogen reduced?	
	dia nan ang ana dar ma nat ata dar da		


26. A voltaic cell consists of a copper electrode immersed in a solution of 1.0 M copper(II)chloride and a zinc electrode immersed in a solution of 1.0 M zinc nitrate. The two half cells are connected by means of a salt bridge. Given the standard electrode potential (E⁰) values:

 $\frac{\text{Cu}^{2+}}{\text{Cu}}$ +0.34V $\frac{\text{Cu}^{2+}}{\text{Zn}^{2+}}$ -0.76V

Which statement is **false**?

- A The copper electrode is the cathode.
- B The mass of the zinc electrode decreases during discharge.
- C The concentration of Cu²⁺ decreases during discharge.
- D The cell potential is zero when the concentration of Cu^{2+} is equal to the concentration of Zn^{2+} .
- E Electrons flow through the external circuit from the zinc electrode to the copper electrode.

<u>Questions 27 –30</u> concern the graphs A to E. Each graph may be used once, more than once, or not at all.

Which graph best represents

- 27. rate versus concentration of X, for a reaction which is zero order in X.
- 28. energy of activation versus temperature for a reaction.
- 29. the titration curve for the titration of an acid with a base.
- 30. the titration curve for the titration of a base with an acid.

Section B: Answer all questions in this section in the spaces provided in the question paper.

Phosgene (COCl₂) is an important intermediate in the manufacture of certain plastics. It is produced by the reaction: CO (g) + Cl₂ (g)

COCl₂(g) for which the equilibrium constant, K_p, is 0.20 at 600 °C.
 10 mol each of CO and Cl₂ are placed in a 1.0 dm³ vessel and allowed to reach equilibrium.

a] Find the partial pressure of each gas at equilibrium. [5 marks]

- b] Find the total pressure of the gases at equilibrium. [1 mark]
- 2. Write expressions for K_a for a weak acid HA, K_b for its conjugate base, and K_w . Use these to show that $K_w = K_a \times K_b$ for an acid/base conjugate pair. [2 marks]

- 3. Find the pH of the following mixtures. $K_a(CH_3COOH) = 1.8 \times 10^{-5}$.
 - a] 30.0 cm³ 0.020 M HCl + 20.0 cm³ 0.030 M KOH. [2 marks]

b] 20.0 cm³ 0.20 M CH₃COOH + 20.0 cm³ 0.20 M KOH. [5 marks]

- 4. A buffer solution, A, is 1.0 M in CH₃COOH and 1.0 M in CH₃COONa. Another buffer solution, B, is 0.10 M in CH₃COOH and 0.10 M in CH₃COONa.
 - a] Show that both A and B have the same pH.

[3 marks]

b] Show that A has better buffering capacity than B by finding the pH of each solution after 1.0 cm³ of 1.0 M HCl has been added to each solution separately.

(Ignore the small change in volume on addition of the HCl). [5 marks]

5. A saturated solution of H_2S is 0.10 M. The equilibrium constant for the

$$H_2S$$
 (aq) + H_2O (l) \rightleftharpoons 2 H_3O^+ (aq) + S^{2-} (aq) is 1.1 x10⁻²⁰.

An aqueous solution buffered at pH 3.00 is saturated with H_2S . What is the concentration of S^{2-} in this solution? [2 marks] a]

A solution which is 0.0010 M in Fe²⁺, Cd²⁺, Co²⁺, and Mn²⁺ is saturated with H₂S at a pH of 3.00. Which metals form a sulphide precipitate? Show b] [2 marks] your reasoning. K_s values are:

Sulphide	$\underline{\mathbf{K}}_{\mathbf{s}}$
FeS	6×10^{-18}
CdS	8×10^{-27}
CoS	4×10^{-21}
MnS	2.5×10^{-10}

- 6. Derive a balanced ionic equation for each reaction by writing half equations then combining them.
 - a] In acid medium: $S_2O_6^{2\text{-}}(aq) \ + \ HClO_2\ (aq) \ \rightarrow \ SO_4^{2\text{-}}(aq) \ + Cl_2\ (g) \quad \ [3\ marks]$

b] In basic medium: $Ag(s) + HS^{-}(aq) + CrO_{4}^{2-}(aq) \rightarrow Ag_{2}S(s) + Cr(OH)_{3}(s)$ [3 marks]

- 7. A <u>standard</u> voltaic cell is made by placing a magnesium electrode immersed in a solution of magnesium chloride in one compartment and a platinum electrode in contact with hydrochloric acid and hydrogen gas in the other compartment. E⁰ for the Mg²⁺/Mg couple is -2.38 V.
 - a] What is the concentration of magnesium chloride? [1 mark]
 - b] What is the pressure of the hydrogen gas? [1 mark]
 - c] Draw a **fully labeled** diagram of the cell, including the anode and the cathode, and indicate the direction of flow of electrons. [5 marks]

- d] i) Under what conditions would the cell potential be reduced to zero? [1 mark]
 - ii) Given the Nernst equation: $E = E^0 \frac{0.059}{n} \log Q$, find the value of the equilibrium constant for the reaction: $Mg(s) + 2H^+ \rightleftharpoons Mg^{2+}(aq) + H_2(g)$ [4 marks].

END OF EXAMINATION