Some Equilibrium Revision Questions

1) For the equilibrium $\mathrm{X}(\mathrm{g}) \rightleftharpoons \mathrm{Y}(\mathrm{g})+\mathrm{Z}(\mathrm{g})$, a $500 \mathrm{~cm}^{3}$ flask contains $1 \mathrm{~mol} \mathrm{X}, 1 \cdot 5 \mathrm{~mol} \mathrm{Z}$ and $2 \cdot 5 \mathrm{~mol} \mathrm{Y}$ in equilibrium together at $0^{\circ} \mathrm{C}$. Find K_{p} for the reaction. If a second equilibrium mixture at the same temperature has $\mathrm{P}_{\mathrm{x}}=10 \mathrm{~atm}$ and $\mathrm{P}_{\mathrm{y}}=6 \mathrm{~atm}$, find P_{z}.
2) In an experiment conducted at a certain temperature, some HBr was admitted into an evacuated $2000 \mathrm{~cm}^{3}$ vessel and when equilibrium was attained some had decomposed yielding 6.32 mol of bromine as one product.

$$
2 \mathrm{HBr}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})
$$

The equilibrium constant was 7.50 .
i) What was the concentration of each species present at equilibrium?
ii) What mass of HBr was originally let into the vessel?
3) At elevated temperatures, aluminium chloride, $\mathrm{Al}_{2} \mathrm{Cl}_{6}$, reacts to form $\mathrm{Al}_{3} \mathrm{Cl}_{9}$ according to the equation:

$$
3 \mathrm{Al}_{2} \mathrm{Cl}_{6}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{Al}_{3} \mathrm{Cl}_{9}(\mathrm{~g})
$$

In an experiment at 454 K , the equilibrium partial pressure of $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ is 1.00 atm , and the equilibrium partial pressure of $\mathrm{Al}_{3} \mathrm{Cl}_{9}$ is 1.02×10^{-2} atm. Calculate the equilibrium constants, K_{p} and K_{c} of the above reaction at 454 K

