Some Equilibrium Revision Questions

- 1) For the equilibrium $X(g) \rightleftharpoons Y(g) + Z(g)$, a 500 cm³ flask contains 1 mol X, 1.5 mol Z and 2.5 mol Y in equilibrium together at 0°C. Find K_p for the reaction. If a second equilibrium mixture at the same temperature has $P_x = 10$ atm and $P_y = 6$ atm, find P_z .
- 2) In an experiment conducted at a certain temperature, some HBr was admitted into an evacuated 2000 cm³ vessel and when equilibrium was attained some had decomposed yielding 6.32 mol of bromine as one product.

$$2HBr(g) \Rightarrow H_2(g) + Br_2(g)$$

The equilibrium constant was 7.50.

- i) What was the concentration of each species present at equilibrium?
- ii) What mass of HBr was originally let into the vessel?
- 3) At elevated temperatures, aluminium chloride, Al₂Cl₆, reacts to form Al₃Cl₉ according to the equation:

$3Al_2Cl_6(g) \rightleftharpoons 2Al_3Cl_9(g)$

In an experiment at 454 K, the equilibrium partial pressure of Al₂Cl₆ is 1.00 atm, and the equilibrium partial pressure of Al₃Cl₉ is 1.02×10^{-2} atm. Calculate the equilibrium constants, K_p and K_c of the above reaction at 454 K