\qquad / 30

Chemistry 225 Semester 04-2016
 Test on Equilibrium etc.

Attempt all of the following questions. Write your answers in the spaces provided on the question paper. You have 50 minutes. Clarity of expression is important. Underline your answers and express them to the correct number of significant figures. Working must be shown for full marks.
You may need the following information:

$$
\begin{aligned}
& \operatorname{Ln}\left(\frac{K_{2}}{K_{1}}\right)=-\frac{\Delta H^{\circ}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \\
& \Delta G^{\circ}=-R T \operatorname{Ln}(K) \\
& K_{p}=K_{c}(R T)^{\Delta n} \\
& \mathrm{R}=8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}=0.0821 \mathrm{Latm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
& 0^{\circ} \mathrm{C}=273 \mathrm{~K}
\end{aligned}
$$

1) a. Write down the equilibrium expression for the following equilibrium in the form $\mathrm{K}_{1}=$:
(2 marks)

$$
\begin{gathered}
2 \mathrm{Fe}(\mathrm{~s})+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+14 \mathrm{H}^{+}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{Cr}^{3+}(\mathrm{aq})+2 \mathrm{Fe}^{3+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \ldots(1) \\
K_{1}=\frac{\left[\mathrm{Cr}^{3+}\right]^{2}\left[\mathrm{Fe}^{3+}\right]}{\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right]\left[\mathrm{H}^{+}\right]^{14}}
\end{gathered}
$$

b. Write down a relationship between the equilibrium constant $\left(\mathrm{K}_{1}\right)$ for the above reaction and that for the following reaction $\left(\mathrm{K}_{2}\right)$. Explain your answer.

$$
2 \mathrm{Cr}^{3+}(\mathrm{aq})+2 \mathrm{Fe}^{3+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons 2 \mathrm{Fe}(\mathrm{~s})+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+14 \mathrm{H}^{+}(\mathrm{aq}) \ldots(2)
$$

(No working required.)

$$
K_{1}=\frac{1}{K_{2}}
$$

since (2) is (1) reversed.
2) The equilibrium constant, K_{3}, for the reaction

$$
3 \mathrm{~A}(\mathrm{aq})+\mathrm{B}(\mathrm{aq}) \rightleftharpoons 3 \mathrm{C}(\mathrm{aq})+2 \mathrm{D}(\mathrm{aq}) \ldots(3)
$$

is 8.00 .
a. If in an equilibrium mixture $[\mathrm{A}]=3.00 \mathrm{M},[\mathrm{B}]=4.00 \mathrm{M}$ and $[\mathrm{D}]=16.00 \mathrm{M}$, find $[\mathrm{C}]$

$$
\begin{aligned}
& K_{3}=\frac{[C]^{3}[D]^{2}}{[A]^{3}[B]} \\
& \therefore[C]^{3}=\frac{K_{3}[A]^{3}[B]}{[D]^{2}} \\
& \therefore[C]=\sqrt[3]{\frac{K_{3}[A]^{3}[B]}{[D]^{2}}}=\sqrt[3]{\frac{8 \times 3^{3} \times 4}{16^{2}}}=\sqrt[3]{\frac{3^{3}}{2^{3}}}=\frac{3}{2}=\underline{\underline{1.50}} \mathrm{M} \text { to } 3 \mathrm{~s} . \mathrm{f} .
\end{aligned}
$$

b. Given that the equilibrium constant, K_{4}, for

$$
\begin{equation*}
11 / 2 \mathrm{C}(\mathrm{aq})+\mathrm{D}(\mathrm{aq}) \rightleftharpoons \mathrm{E}(\mathrm{aq}) \tag{4}
\end{equation*}
$$

Is 4.00, find the equilibrium constant, K_{5}, for

$$
3 \mathrm{~A}(\mathrm{aq})+\mathrm{B}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{E}(\mathrm{aq}) \ldots(5)
$$

(3 marks)
$2 \times(4)$ is

$$
3 \mathrm{C}(\mathrm{aq})+2 \mathrm{D}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{E}(\mathrm{aq}) \ldots(6)
$$

(3) is

$$
\begin{equation*}
3 \mathrm{~A}(\mathrm{aq})+\mathrm{B}(\mathrm{aq}) \rightleftharpoons 3 \mathrm{C}(\mathrm{aq})+2 \mathrm{D}(\mathrm{aq}) \tag{7}
\end{equation*}
$$

(6) $+(7)$ is
$3 \mathrm{C}(\mathrm{aq})+2 \mathrm{D}(\mathrm{aq})+3 \mathrm{~A}(\mathrm{aq})+\mathrm{B}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{E}(\mathrm{aq})+3 \mathrm{C}(\mathrm{aq})+2 \mathrm{D}(\mathrm{aq})$
Cancelling like terms gives
Page 1 of 3

Chem 225 Semester 04-2016 continued.

$$
3 \mathrm{~A}(\mathrm{aq})+\mathrm{B}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{E}(\mathrm{aq}), \text { which is }(5)
$$

$$
\text { Hence } \mathrm{K}_{5}=\left(\mathrm{K}_{4}\right)^{2} \times\left(\mathrm{K}_{3}\right)=4^{2} \times 8=\underline{128} \text { to } 3 \text { s.f. }
$$

3) a. Calculate the reaction quotient $\left(\mathrm{Q}_{\mathrm{p}}\right)$ for a mixture in which $P_{\mathrm{H}_{2}}=0.200 \mathrm{~atm}, P_{N_{2}}=0.100 \mathrm{~atm}$, and $P_{N H_{3}}=$ 0.100 atm . The equation for the reaction is

$$
3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

$$
Q=\frac{\left(P_{N H_{3}}\right)^{2}}{\left(P_{H_{2}}\right)^{3}\left(P_{N_{2}}\right)}=\frac{(0.1)^{2}}{(0.2)^{3}(0.1)}=\frac{\left(10^{-1}\right)^{2}}{\left(2 \times 10^{-1}\right)^{3}\left(10^{-1}\right)}=\frac{10^{-2}}{2^{3} \times 10^{-3} \times 10^{-1}}=0.125 \times 10^{2}=\underline{\underline{12.5}}
$$

(Q , like K is unitless.)
b. If $\mathrm{K}=49$ for the above system, compare your value of Q and predict what will happen.
(2 marks)
Since $\mathrm{Q}<\mathrm{K}$, the system is not at equilibrium and Q must increase until it equals K . This means that reaction will occur in the forward direction.
4) a. Sufficient $\mathrm{PCl}_{3}(\mathrm{~g})$ and $\mathrm{Cl}_{2}(\mathrm{~g})$ were introduced into a vessel to give partial pressures, before any reaction occurred, of 1.00 atm and 2.00 atm respectively. Calculate the equilibrium partial pressure of $\mathrm{PCl}_{3}(\mathrm{~g})$ given that the equilibrium constant, K_{1}, for

$$
\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{5}(\mathrm{~g}) \ldots(6)
$$

is 0.588 at $250^{\circ} \mathrm{C}$.

	$\mathrm{PCl}_{3}(\mathrm{~g})$	$\mathrm{Cl}_{2}(\mathrm{~g})$	$\mathrm{PCl}_{5}(\mathrm{~g})$
$\mathrm{I} / \mathrm{atm}$	1	2	0
$\mathrm{C} / \mathrm{atm}$	-x	-x	+x
$\mathrm{E} / \mathrm{atm}$	$1-\mathrm{x}$	$2-\mathrm{x}$	x

$$
\begin{aligned}
& K_{1}=\frac{x}{(1-x)(2-x)} \\
& \therefore K_{1}(1-x)(2-x)=x \\
& \therefore K_{1}\left(2-3 x+x^{2}\right)=x \\
& \therefore 2 K_{1}-3 K_{1} x+K_{1} x^{2}=x \\
& \therefore K_{1} x^{2}-\left(3 K_{1}+1\right) x+2 K_{1}=0
\end{aligned}
$$

This is a quadratic in x and so

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \text { where } \\
& a=K_{1}=0.588, b=-\left(3 K_{1}+1\right)=-(3 \times 0.588+1)=-2.764 \text { and } c=2 K_{1}=1.176 \text { and } s o \\
& x=\frac{2.764 \pm \sqrt{(2.764)^{2}-4 \times 0.588 \times 1.176}}{2 \times 0.588}=0.47308 \ldots \text { and } 4.2275 \ldots
\end{aligned}
$$

But only 0.47308 is meaningful since 1-x, the partial pressure of PCl_{3} must be positive.
Hence the equilibrium partial pressure of PCl_{3} is
$1-0.47308 \ldots=0.5269 \ldots=\underline{\underline{0.527}}$ atm to 3 s.f.
b. Given that $\Delta \mathrm{H}^{\circ}$ for the reaction is $-92.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$, calculate the equilibrium constant $\left(\mathrm{K}_{2}\right)$ for the reaction at 300 K .
(4 marks)
Given on the paper:
$\operatorname{Ln}\left(\frac{K_{2}}{K_{1}}\right)=-\frac{\Delta H^{\circ}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
and $\mathrm{R}=8.31 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

Chem 225 Semester 04-2016 continued.

$$
\begin{aligned}
& \operatorname{Ln}\left(\frac{K_{2}}{0.588}\right)=-\frac{(-92.5)}{8.31}\left(\frac{1}{300}-\frac{1}{250+273}\right)=15.8205 \ldots \\
& \therefore \frac{K_{2}}{0.588}=e^{15.8205 \ldots}=7.4266 \ldots \times 10^{6} \\
& \therefore K_{2}=7.4266 \ldots \times 10^{6} \times 0.588=4.36688 \ldots=\underline{\underline{4.37 \times 10^{6}}} t o 3 \text { s.f. }
\end{aligned}
$$

c. Calculate $\Delta \mathrm{G}^{\circ}$ for reaction (6) at $250^{\circ} \mathrm{C}$. Express your answer in $\mathrm{kJ} \mathrm{mol}^{-1}$.
(3 marks)

$$
\begin{aligned}
& \Delta G^{o}=-R T \operatorname{Ln}(K)=-8.31 \times 523 \times \operatorname{Ln}(0.588) \\
& =2307.92 \mathrm{~J} \mathrm{~mol}^{-1}=\underline{\underline{2} .31} \mathrm{~kJ} \mathrm{~mol}^{-1} \text { to } 3 \text { s.f. }
\end{aligned}
$$

d. Calculate K_{c} for the reaction at $250^{\circ} \mathrm{C}$.

$$
K_{p}=K_{c}(R T)^{\Delta n}
$$

where $\mathrm{K}_{\mathrm{p}}=0.588, \mathrm{R}=0.081 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ and $\mathrm{T}=250+273=523 \mathrm{~K}$
$\Delta \mathrm{n}$ is the change in the number of moles going left to right in the equation, $1-2=-1$

$$
K_{c}=\frac{K_{p}}{(R T)^{\Delta n}}=\frac{0.588}{(0.0821 \times 523)^{-1}}=0.588 \times 0.0821 \times 523=25.24772 . .=25.2 \mathrm{to} 3 \mathrm{~s} . f .
$$

