Chemistry 225 Semester 04-2016 Homework \#4a - Answer Key

1) The following mechanism has been proposed for the reaction of NO with Br_{2} in the gaseous state:

$$
\begin{equation*}
\mathrm{NO}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \underset{\mathrm{k}_{-1}}{\stackrel{\mathrm{k}_{1}}{\rightleftharpoons}} \mathrm{NOBr}_{2}(\mathrm{~g}) \tag{1}
\end{equation*}
$$

$\mathrm{NOBr}_{2}(\mathrm{~g})+\mathrm{NO}(\mathrm{g}) \rightarrow 2 \mathrm{NOBr}(\mathrm{g}) \ldots(2)$
The potential energy profile for this reaction is given below:

Progress of Reaction \longrightarrow
a) Write the equation for the overall reaction.

$$
\begin{equation*}
2 \mathrm{NO}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NOBr} \tag{1}
\end{equation*}
$$

b) Which step in the mechanism is the rate determining step? Give a reason for your answer.
The second step must be the rate-determining step because it has the higher activation energy. ($\mathrm{E}_{\mathrm{a} 1}<\mathrm{E}_{\mathrm{a} 2}$ as shown on the diagram.)
c) Identify an intermediate in the mechanism.
NOBr_{2} is an intermediate.
d) Derive the rate law for the reaction from the mechanism.

Rate of overall reaction, $\mathrm{R}_{\mathrm{o}}=$ rate of rate-determining step, R_{2}
Since this is an elementary step, the rate equation follows the stoichiometry:

$$
\therefore \mathrm{R}_{\mathrm{o}}=\mathrm{R}_{2}=\mathrm{k}_{2}\left[\mathrm{NOBr}_{2}\right][\mathrm{NO}]
$$

But NOBr_{2} is an intermediate, and its concentration is unknown and uncontrollable.
Its concentration must be related to the controllable concentrations of reactants:
Since step 1 is fast, it is approximately an equilibrium, and so:

$$
\mathrm{K}_{1}=\left[\mathrm{NOBr}_{2}\right] /\left([\mathrm{NO}]\left[\mathrm{Br}_{2}\right]\right)
$$

$$
\therefore\left[\mathrm{NOBr}_{2}\right]=\mathrm{K}_{1}[\mathrm{NO}]\left[\mathrm{Br}_{2}\right]
$$

and substituting for $\left[\mathrm{NOBr}_{2}\right]$ in the expression for R_{2}, we have:

$$
\begin{gathered}
\mathrm{R}_{\mathrm{o}}=\mathrm{k}_{2}\left(\mathrm{~K}_{1}[\mathrm{NO}]\left[\mathrm{Br}_{2}\right]\right)[\mathrm{NO}] \\
\therefore \mathrm{R}_{\mathrm{o}}=\mathrm{k}_{2} \mathrm{~K}[\mathrm{NO}]^{2}\left[\mathrm{Br}_{2}\right] \\
\text { and replacing } \mathrm{k}_{2} \mathrm{~K} \text { with } \mathrm{k}_{0} \text { we have: } \\
\quad \underline{\mathrm{R}}_{0}=\mathrm{k}_{0}[\mathrm{NO}]^{2}\left[\mathrm{Br}_{2}\right]
\end{gathered}
$$

where k_{0} is the rate constant for the overall reaction.
Alternatively we may note, that since step 1 is an elementary step, the rate of the forward reaction is given by:

$$
\mathrm{R}_{1}=\mathrm{k}_{1}[\mathrm{NO}]\left[\mathrm{Br}_{2}\right]
$$

and the rate of the reverse reaction is:

$$
\mathrm{R}_{-1}=\mathrm{k}_{-1}\left[\mathrm{NOBr}_{2}\right]
$$

Since the step is fast, both in the forward and reverse directions:

$$
\begin{gathered}
\mathrm{R}_{1} \simeq \mathrm{R}_{-1} \\
\text { and so: } \\
\mathrm{k}_{1}[\mathrm{NO}]\left[\mathrm{Br}_{2}\right]=\mathrm{k}_{-1}\left[\mathrm{NOBr}_{2}\right] \\
\therefore\left[\mathrm{NOBr}_{2}\right]=\left(\mathrm{k}_{1} / \mathrm{k}_{-1}\right)[\mathrm{NO}]\left[\mathrm{Br}_{2}\right] \\
\text { and substituting as before: } \\
\mathrm{R}_{\mathrm{o}}=\mathrm{k}_{2}\left(\mathrm{k}_{1} / \mathrm{k}_{-1}\right)[\mathrm{NO}]^{2}\left[\mathrm{Br}_{2}\right]
\end{gathered}
$$

e) What can you conclude about the proposed mechanism if the experimentally determined rate law is found to be the same as that determined from the mechanism.
This tells us that the mechanism may be correct, but does not tells us that it definitely is, since other mechanisms may lead to the same rate equation.
f) If the rate constant is found to be $1.00 x^{-3} s^{-1}$, what is the order of the reaction?

The reaction is first order. (Since the units are s^{-1}.)
i) Determine the half-life of the reaction.

$$
\begin{equation*}
\mathrm{t}_{1 / 2}=\ln (2) / \mathrm{k}=\ln (2) / 1.00 \times 10^{-3}=693.1471806 \mathrm{~s}=693 \mathrm{~s} \text { to } 3 \text { s.f. } \tag{2}
\end{equation*}
$$

ii) Determine the time required for the concentration of NO to fall from 0.100 M to 0.0750 M .

For a first order reaction: $\ln \left([\mathrm{A}]_{\mathrm{t}}\right)=\ln \left([\mathrm{A}]_{0}-\mathrm{kt}\right.$ or

$$
\begin{gather*}
\ln \left(\frac{[A]_{0}}{[A]_{t}}\right)=k t \tag{3}\\
\therefore \ln \left(\frac{0.100}{0.0750}\right)=1.00 \times 10^{-3} \times t \\
\therefore t=\left(\frac{\ln \left(\frac{0.1}{0.075}\right)}{1 \times 10^{-3}}\right)=287.6820725=\underline{\underline{288 \text { s }} \text { to } 3 \text { s.f. }}
\end{gather*}
$$

2) The reaction

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

has $\Delta \mathrm{H}^{\circ}=-906.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and Kp is 3.97×10^{167} at $25^{\circ} \mathrm{C}$. (If your calculator can't handle the large numbers involved, use a spread sheet to do the calculations.)
a) Calculate $\Delta \mathrm{G}^{\circ}$, making sure to include units. What does the sign of this value tell you?

$$
\begin{aligned}
\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln (\mathrm{~K})=- & 8.31 \times 298 \times \ln \left(3.97 \times 10^{167}\right)^{=}-9.55660986 \times 10^{5} \mathrm{~J} \mathrm{~mol}^{-1} \\
& =\underline{\underline{-9.56 \times 10^{2} \mathrm{~kJ} \mathrm{~mol}^{-1}} \text { to } 3 \text { s.f. }}
\end{aligned}
$$

The negative value shows that the reaction is spontaneous in the forward direction.
b) Calculate $\Delta \mathrm{G}$ when the partial pressures of $\mathrm{NO}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$, and O_{2} are 2.00, 2.50, 1.00×10^{-25} and $1.00 \times 10^{-30} \mathrm{~atm}$ respectively and determine the direction of reaction under these conditions.

$$
\begin{equation*}
\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{R} \ln (\mathrm{Q}) \tag{4}
\end{equation*}
$$

$$
\begin{gathered}
\text { But } \mathrm{Q}=\frac{\left(\mathrm{p}_{\mathrm{NO}}\right)^{4}\left(\mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}\right)^{6}}{\left(p_{\mathrm{NH}_{3}}\right)^{4}\left(\mathrm{p}_{\mathrm{O}_{2}}\right)^{5}}=\frac{2.00^{4} \times 2.50^{6}}{\left(1.00 \times 10^{-25}\right)^{4} \times\left(1.00 \times 10^{-30}\right)^{5}}=3.9063 \times 10^{253} \\
\begin{aligned}
=\Delta \mathrm{G}=-9.55660986 \times 10^{5}+ & 8.31 \times 298 \times \operatorname{Ln}\left(3.9063 \times 10^{253}\right)=490338.451 \mathrm{~J} \mathrm{~mol}^{-1} \\
& =+490 \mathrm{~kJ} \mathrm{~mol}^{-1} \text { to } 3 \text { s.f. }
\end{aligned}
\end{gathered}
$$

The positive sign indicates that the reaction is spontaneous in the reverse direction.
(Alternatively, $\mathrm{Q} \gg \mathrm{K}$ gives the same conclusion.)
c) Estimate K_{p} at $1000^{\circ} \mathrm{C}$. Why is this estimate liable to be very inaccurate? Is its magnitude relative to K_{p} at $25^{\circ} \mathrm{C}$ to be expected on the basis of Le Chatelier's principle?

Van t'Hoff's equation may be stated as:

$$
\begin{align*}
& \quad \ln \left(\frac{K_{2}}{K_{1}}\right)=-\frac{\Delta H^{\circ}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \tag{8}\\
& \therefore \ln \left(\frac{K_{2}}{K_{1}}\right)=-\frac{-906.2 \times 10^{3}}{8.31}\left(\frac{1}{1000+273}-\frac{1}{25+273}\right) \\
& =1.0905 \times 10^{5} \times(0.000785546-0.003355705)=-2.802741 \times 10^{2} \\
& \therefore \frac{K_{2}}{K_{1}}=e^{-2.802741 \times 10^{2}}=1.8989 \times 10^{-122} \\
& \therefore K_{2}=K_{1} \times 1.8989 \times 10^{-122}=3.97 \times 10^{167} \times 1.8989 \times 10^{-122}=7.5356 \times 10^{45} \\
& =7.54 \times 10^{45} \text { to } 3 \text { s.f. }
\end{align*}
$$

The value is liable to be very inaccurate because Van t'Hoff's equation includes the implicit assumption that $\Delta \mathrm{H}^{\circ}$ does not change with temperature. This is approximately true over small ranges of temperature, but $975^{\circ} \mathrm{C}$ is hardly a small
range of temperature.
Since $\Delta \mathrm{H}^{\circ}<0$, Le Chatelier's principle suggests that equilibrium should shift to the left as temperature increases. The smaller value of K at the higher temperature shows that it has, so, yes, it is consistent with Le Chatelier's principle.
3) Determine the pH of each of the following solutions:
a) 0.0200 M formic acid solution, $\mathrm{K}_{\mathrm{a}}\left(\mathrm{HCO}_{2} \mathrm{H}\right)=1.77 \times 10^{-4} @ 25^{\circ} \mathrm{C}$

The equation is $\mathrm{HCO}_{2} \mathrm{H}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{HCO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ giving the ICE table:

\[

\]

Assume $\mathrm{x}<5 \%$ of 0.02 so that $0.02-\mathrm{x} \simeq 0.02$

$$
\therefore K_{a} \approx \frac{x^{2}}{0.02}
$$

$$
\therefore x=\sqrt{0.02 K_{a}}=\sqrt{0.02 \times 1.77 \times 10^{-4}}=1.88149 \times 10^{-3}
$$

$$
\therefore\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.88149 \times 10^{-3}
$$

$$
\therefore \mathrm{pH}=-\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)==-\log \left(1.88149 \times 10^{-3}\right)=2.725498369=2.73 \text { to } 2 \text { d.p. }
$$ Check assumption:

$\mathrm{x} / 0.02=1.88 \times 10^{-3} / 0.02=0.094 \simeq 9.4 \%-$ assumption not valid: we must solve the quadratic.

$$
\begin{aligned}
& K_{a} \approx \frac{x^{2}}{0.02-x} \\
& \therefore x^{2}+K_{a} x-0.02 \times K_{a}=0 \\
& \therefore x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-K_{a} \pm \sqrt{(-0.02)^{2}+4 \times 0.02 K_{a}}}{2} \\
& =\frac{-0.000177+\sqrt{(0.000177)^{2}+4 * 0.02 * 0.000177}}{2}=1.7950 \times 10^{-3}
\end{aligned}
$$

(Only the positive sign gives $\mathrm{x}>0$.)

$$
\therefore\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.7950 \times 10^{-3}
$$

$$
\therefore \mathrm{pH}=-\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)==-\log \left(1.7950 \times 10^{-3}\right)=2.7459=\underline{\underline{2.75}} \text { to } 2 \text { d.p. }
$$

(Not a very significant difference!)
a) \qquad
b) 0.0600 M sodium hydroxide solution.

For a strong base such as $\mathrm{NaOH},\left[\mathrm{OH}^{-}\right]=$conc. of base $=0.0600 \mathrm{M}$

$$
\begin{align*}
\therefore \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]=-\log (0.06) & =1.2218 \ldots \tag{3}\\
\therefore \mathrm{pH}=\mathrm{pK}_{\mathrm{w}}-\mathrm{pOH}=14.00-1.2218 \ldots & =\underline{\underline{12.78}} \text { to } 2 \mathrm{~d} . \mathrm{p} .
\end{align*}
$$

c) A mixture formed by adding $60.0 \mathrm{~cm}^{3}$ of solution (a) to $20.0 \mathrm{~cm}^{3}$ of solution (b).(5) (See sample exercise Sample Exercise 17.9 in your textbook.)
We first consider the reaction that occurs between $\mathrm{HCO}_{2} \mathrm{H}$ and NaOH by considering the \# of moles of each.
Solution (a) contains $\frac{60}{1000} \times 0.02=1.2 \times 10^{-3} \mathrm{~mol}$ and solution (b) contains

$$
\frac{20}{1000} \times 0.06=1.2 \times 10^{-3} \mathrm{~mol} \text { so the } \mathrm{NaOH} \text { completely neutralises the } \mathrm{HCO}_{2} \mathrm{H},
$$

according to $\mathrm{HCO}_{2} \mathrm{H}(\mathrm{aq})+\mathrm{Na}^{+} \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{HCO}_{2}{ }^{-} \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
and produces $1.2 \times 10^{-3} \mathrm{~mol}$ of $\mathrm{HCO}_{2}{ }^{-}$in solution.
(Acid plus base gives salt plus water.)
The $\mathrm{HCO}_{2}{ }^{-}$is dissolved in $60+20=80 \mathrm{~cm}^{3}$ of solution, and so the concentration is

$$
\frac{1.2 \times 10^{-3}}{(80 / 1000)}=1.50 \times 10^{-2} \mathrm{M}
$$

$\mathrm{HCO}_{2}{ }^{-}$is the conjugate base of $\mathrm{HCO}_{2} \mathrm{H}$, and so its K_{b} is given by $\mathrm{K}_{\mathrm{a}} \mathrm{K}_{\mathrm{b}}=10^{-14}$ or

$$
\mathrm{K}_{\mathrm{b}}=10^{-14} / \mathrm{K}_{\mathrm{a}}=10^{-14} / 1.77 \times 10^{-4}=5.64972 \times 10^{-11}
$$

The equilibrium equation is $\mathrm{HCO}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{HCO}_{2} \mathrm{H}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$ giving the ICE table:

	$\mathrm{HCO}_{2}{ }^{-}$	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{HCO}_{2} \mathrm{H}$	OH^{-}
I / M	0.015	--	0	0^{1}
C / M	-x	--	+x	+x
E / M	$0.015-\mathrm{x}$	--	x	x

${ }^{1}$ Assuming the contribution from water is negligible. See last page.

$$
\begin{gathered}
K_{b}=5.64972 \times 10^{-11}=\frac{\left[\mathrm{HCO}_{2}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{HCO}_{2} \mathrm{H}\right]}=\frac{x . x}{0.015-x} \\
\text { Assume } \mathrm{x} \ll 0.015 \text { so that } 0.015-\mathrm{x} \simeq 0.015 \\
\therefore K_{b} \approx \frac{x^{2}}{0.015} \\
\therefore x=\sqrt{0.015 K_{b}}=\sqrt{0.015 \times 5.64972 \times 10^{-11}}=9.20575 \times 10^{-7} \\
\therefore\left[\mathrm{OH}^{-}\right]=9.20575 \times 10^{-7} \\
\therefore \mathrm{pOH}=-\log ([\mathrm{OH}])=-\log \left(9.20575 \times 10^{-7}\right)=6.0359 \\
\therefore \mathrm{pH}=\mathrm{pK}_{\mathrm{w}}-\mathrm{pOH}=14.00-6.0359=\underline{\underline{7.96}} \text { to } 2 \mathrm{~d} . \mathrm{p} .
\end{gathered}
$$

Now we check the assumption:

$$
\mathrm{x} / 0.015=8.2 \times 10^{-7} / 0.015 \simeq 5.5 \times 10^{-5}=5.5 \times 10^{-3} \% \ll 5 \%-\text { assumption valid. }
$$

Check if the contribution of $\mathrm{H}_{3} \mathrm{O}^{+}$or OH^{-}from water is truly negligible.

For the dissociation of the acid as in 3(a), the ICE table, allowing for the $\mathrm{H}_{3} \mathrm{O}^{+}$
contributed by $\mathrm{H}_{2} \mathrm{O}$, becomes:

	$\mathrm{HCO}_{2} \mathrm{H}$	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{HCO}_{2}{ }^{-}$	$\mathrm{H}_{3} \mathrm{O}^{+}$
I / M	0.0200	--	0	y_{1}
C / M	-x	--	+x	+x
E / M	$0.02-\mathrm{x}$	--	x	$\mathrm{y}+\mathrm{x}$

Where y_{1} and y represent the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$from water, and x is the contribution from the acid. Note that $y_{1} \neq y$ since the presence of $\mathrm{H}_{3} \mathrm{O}^{+}$from the
dissociation of the acid suppresses the dissociation of water. Since water dissociates to form $1 \mathrm{OH}^{-}$for every $\mathrm{H}_{3} \mathrm{O}^{+}$, at equilibrium $\left[\mathrm{OH}^{-}\right]=y$. We may now construct two simultaneous equations:

$$
\begin{align*}
& K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=(y+x) y=1.00 \times 10^{-14} . \tag{1}\\
& K_{a}=\frac{\left[A^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HA}]}=\frac{x(y+x)}{0.02-x}=1.77 \times 10^{-4} \ldots . \tag{2}
\end{align*}
$$

If we assume as a first approximation that $\mathrm{y} \ll \mathrm{x}$, then $\mathrm{y}+\mathrm{x} \simeq \mathrm{x}$, and equation (2)
becomes the same as the one we solved earlier to give $x=1.7950 \times 10^{-3}$. Also, from equation (1) we see that:

$$
y=\frac{1.00 \times 10^{-14}}{y+x} \ldots(3)
$$

and again assuming $\mathrm{y} \ll \mathrm{x}$, (3) becomes:

$$
y=\frac{1.00 \times 10^{-14}}{x}
$$

Substituting for $\mathrm{x}=1.7950 \times 10^{-3}$ gives: $y=\frac{1.00 \times 10^{-14}}{1.795 \times 10^{-3}}=5.57082 \times 10^{-12}$
Checking our assumption, $\mathrm{y} / \mathrm{x}=\left(5.57 \times 10^{-12}\right) /\left(1.7950 \times 10^{-3}\right)=3.1 \times 10^{-9}$ or $3.1 \times 10^{-7} \%$
which is much less than 5%, so the assumption is valid.
(Solving the equations exactly using the solve function at https://cloud.sagemath.com also gives $\mathrm{x}=1.7950 \times 10^{-3}$ and $\mathrm{y}=5.5708 \times 10^{-12}$)

For the dissociation of the base, as in 3(c), the ICE table becomes:

	HCO_{2}^{-}	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{HCO}_{2} \mathrm{H}$	OH^{-}
I /M	0.015	--	0	y_{1}
C / M	-x	--	$+x$	$+x$

$$
\begin{array}{lcc}
\mathrm{E} / \mathrm{M} & 0.0015-\mathrm{x} & \mathrm{-} \\
& K_{b}=\frac{\left.\mathrm{[OH}^{-}\right]\left[\mathrm{HCO}_{2} \mathrm{H}\right]}{\left[\mathrm{HCO}_{2}^{-}\right]}=\frac{\mathrm{y}+\mathrm{x}}{0.015-x} \\
& \text { and } K_{w}=(y+x) y
\end{array}
$$

The equations are the same except K_{b} replaces $\mathrm{K}_{\mathrm{a}}, \mathrm{y}$ is the $\left[\mathrm{OH}^{-}\right]$from water, and x is $\left[\mathrm{HCO}_{2} \mathrm{H}\right]$. Solving as above gives $\mathrm{y} / \mathrm{x} \simeq 1.2 \%$, i.e. less than 5%. Again the assumption is justified, though errors are greater than in the previous case.
Clearly the assumption would not work for a much weaker base, or a much more dilute solution.
(https://cloud.sagemath.com gives $x=9.15 \times 10^{-7}, y=1.08 \times 10^{-8}$, so $y / x \simeq 1.17 \times 10^{-2}$ or 1.2%.)

