Chemistry 225 Semester 04-2016 Homework for Submission \#4 - Answer Key

1) The hydrazinium ion $\left(\mathrm{N}_{2} \mathrm{H}_{5}{ }^{+}\right)$is a weak Brønsted-Lowry acid in water.
a) Write the equation for the acid dissociation of this ion in water. Label the conjugate base of this acid in the equation.

$$
\begin{gathered}
\mathrm{N}_{2} \mathrm{H}_{5}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \underset{\text { conjugate }}{\text { base }}
\end{gathered}
$$

b) The pK_{a} of this ion is 8.23 at $25^{\circ} \mathrm{C}$.
i) Calculate the K_{a} value of the acid.

$$
\begin{align*}
& p K_{a}=-\log _{10}\left(K_{a}\right) \tag{2}\\
& \therefore \mathrm{K}_{a}=10^{-p K_{a}}=10^{-8.23}=5.8884 \times 10^{-9} \approx \underline{\underline{5.89 \times 10^{-9}}} \text { to } 3 \text { s.f. }
\end{align*}
$$

ii) Calculate the pH of a solution which is made up by dissolving 0.015 mol of hydrazinium nitrate, $\mathrm{N}_{2} \mathrm{H}_{5}{ }^{+} \mathrm{NO}_{3}{ }^{-}$, (sometimes used as a rocket fuel) in water to make $2.50 \mathrm{dm}^{3}$ of solution. (NB. The nitrate ion has no appreciable acidic nor basic properties and need not be considered.)
Initial concentration of $\mathrm{N}_{2} \mathrm{H}_{5}{ }^{+}=\left[\mathrm{N}_{2} \mathrm{H}_{5}{ }^{+} \mathrm{NO}_{3}{ }^{-}\right]=\frac{0.015 \mathrm{~mol}}{2.5 \mathrm{dm}^{3}}=6.00 \times 10^{-3}$

	$\mathrm{N}_{2} \mathrm{H}_{5}{ }^{+}(\mathrm{aq})$	+	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	\rightleftharpoons	$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{aq})$	+
$\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$						
Initial /M	6.00×10^{-3}		---		0	
Change /M	$-x$				$+x$	~ 0
Equilibrium /M	$6 \times 10^{-3}-x$				x	$+x$

$$
\therefore K_{a}=\frac{\left[N_{2} H_{4}\right]}{\left[N_{2} H_{5}^{+}\right]\left[H_{3} O^{+}\right]}=\frac{x^{2}}{6 \times 10^{-3}-x}
$$

Assume $x<5 \%$ of 6×10^{-3}.

$$
\begin{aligned}
& \therefore 6 \times 10^{-3}-x \approx 6 \times 10^{-3} \\
& \therefore \frac{x^{2}}{6 \times 10^{-3}-x} \approx \frac{x^{2}}{6 \times 10^{-3}}=K_{a}=5.8884 \ldots \times 10^{-9} \\
& \therefore x^{2}=5.8884 \ldots \times 10^{-9} \times 6 \times 10^{-3}=3.5330 \times 10^{-11} \\
& \therefore x=\sqrt{3.5330 \times 10^{-11}}=5.9439 \times 10^{-6} \\
& \therefore p H=-\log _{10}\left(\left[H_{3} O^{+}\right]\right)-\log _{10}\left(5.9439 \times 10^{-6}\right)=5.2259 \approx 5.23 \text { to } 2 \text { d.p. }
\end{aligned}
$$

Check assumption:
5% of $6 \times 10^{-3}=3 \times 10^{-4}$ and since $x \approx 5.9 \times 10^{-6}$,
$x \ll 5 \%$ of 6×10^{-3}
and the assumption is justified.
2) The hypochlorite ion $\left(\mathrm{ClO}^{-}\right)$is a weak base in water. The base dissociation constant for this ion in water is 3.58×10^{-7} at $25^{\circ} \mathrm{C}$.
a) Write the equation for the base dissociation of this ion in water. Label the conjugate acid of this base in the equation.

$$
\begin{gather*}
\mathrm{ClO}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \stackrel{\mathrm{HClO}(\mathrm{aq})}{ } \text { conjugate }+\mathrm{OH}^{-}(\mathrm{aq}) \tag{2}\\
\text { acid }
\end{gather*}
$$

b) Household bleach is a solution of sodium hypochlorite in water, typically 2.5%.

This means that $100 \mathrm{~cm}^{3}$ of solution contains 2.5 g of sodium hypochlorite, $\mathrm{Na}^{+} \mathrm{ClO}^{-}$.
i) Calculate the molarity of 2.50% sodium hypochlorite solution. (RAM of $\mathrm{Na}=22.99, \mathrm{Cl}=35.45, \mathrm{O}=16.00$.)

Molar mass of $\mathrm{NaClO}=22.99+35.45+16.00=74.44 \mathrm{~g} \mathrm{~mol}^{-1}$
$\therefore 2.50 \mathrm{~g}=\frac{2.50 \mathrm{~g}}{74.44 \mathrm{~g} \mathrm{~mol}^{-1}}=0.033584 \ldots \mathrm{~mol}$
but 2.50 g is present in $100 \mathrm{~cm}^{3}$ of solution.
\therefore Molarity of 2.50% sodium hypochlorite $=\frac{0.033584 \ldots \mathrm{~mol}}{0.1 \mathrm{dm}^{3}}=0.33584 \ldots \mathrm{moldm}^{-3}$
$\approx 0.336 M$ to 3 s.f.
ii) Calculate the pH of 2.50% sodium hypochlorite solution (bleach) at $25^{\circ} \mathrm{C}$. (NB. The sodium ion has no appreciable acidic or basic properties and need not be considered.)

	$\mathrm{ClO}^{-}(\mathrm{aq})$	+	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	\rightleftharpoons	$\mathrm{HClO}(\mathrm{aq})$	+	$\mathrm{OH}^{-}(\mathrm{aq})$
Initial $/ \mathrm{M}$	0.33584		---		0		~ 0
Change $/ \mathrm{M}$	$-x$				$+x$		$+x$
Equilibrium $/ \mathrm{M}$	$0.33584-x$				x		x

The base dissociation constant of the hypochlorite ion, ClO^{-}is $\mathrm{K}_{\mathrm{b}}=3.58 \times 10^{-7}$
$\therefore K_{b}=\frac{[\mathrm{HClO}]}{\left[\mathrm{ClO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{-}\right]}=\frac{x^{2}}{0.33584-x}$
and assuming $x<5 \%$ of 0.33584
$x=\sqrt{0.33584 K_{b}}=\sqrt{0.33584 \times 3.58 \times 10^{-7}}=3.46743 \ldots \times 10^{-4}$
$\therefore p O H=-\log _{10}\left[\mathrm{OH}^{-}\right]=\log _{10}(x)=\log _{10}\left(3.46743 \ldots \times 10^{-4}\right)=3.4599 \ldots$
But $\mathrm{pH}+\mathrm{pOH}=14.00 @ 25^{\circ} \mathrm{C}$
$\therefore \mathrm{pH}=14-3.459992276 \ldots=10.5400 \approx \underline{\underline{10.54}}$ to 2 d.p.
Check assumption:
5% of $0.33584 \approx 1.68 \times 10^{-2}$ and since $x \approx 3.5 \times 10^{-4}$, $x \ll 5 \%$ of 0.33584
and the assumption is justified.

