Chemistry 225 Semester 04 -2016 Homework for Submission #4 – Answer Key

- 1) The hydrazinium ion $(N_2H_5^+)$ is a weak Brønsted-Lowry acid in water.
 - a) Write the equation for the acid dissociation of this ion in water. Label the conjugate base of this acid in the equation.
 - $N_2H_5^+(aq) + H_2O(l) \rightleftharpoons N_2H_4(aq) + H_3O^+(aq)$ conjugate base
 - b) The pK_a of this ion is 8.23 at 25°C.
 - i) Calculate the K_a value of the acid.

$$pK_a = -\text{Log}_{10}(K_a)$$

∴ $K_a = 10^{-pK_a} = 10^{-8.23} = 5.8884 \times 10^{-9} \approx 5.89 \times 10^{-9}$ to 3 s.f.

ii) Calculate the pH of a solution which is made up by dissolving 0.015 mol of hydrazinium nitrate, N₂H₅⁺NO₃⁻, (sometimes used as a rocket fuel) in water to make 2.50 dm³ of solution. (NB. The nitrate ion has no appreciable acidic nor basic properties and need not be considered.)

Initial concentration of N₂H₅⁺ = [N₂H₅⁺NO₃⁻] = $\frac{0.015mol}{2.5dm^3} = 6.00 \times 10^{-3}$

	$N_2H_5^+(aq)$	+	H ₂ O(l)	4	N ₂ H ₄ (aq)	+	$H_3O^+(aq)$			
Initial /M	6.00×10 ⁻³				0		~0			
Change /M	-x				+x		+x			
Equilibrium /M	$6 \times 10^{-3} - x$				x		x			
$\therefore K_{a} = \frac{[N_{2}H_{4}]}{[N_{2}H_{5}^{+}][H_{3}O^{+}]} = \frac{x^{2}}{6 \times 10^{-3} - x}$ Assume $x < 5\%$ of 6×10^{-3} . $\therefore 6 \times 10^{-3} - x \approx 6 \times 10^{-3}$ $\therefore \frac{x^{2}}{6 \times 10^{-3} - x} \approx \frac{x^{2}}{6 \times 10^{-3}} = K_{a} = 5.8884 \times 10^{-9}$ $\therefore x^{2} = 5.8884 \times 10^{-9} \times 6 \times 10^{-3} = 3.5330 \times 10^{-11}$										
$\therefore x = \sqrt{3.5330 \times 10^{-11}} = 5.9439 \times 10^{-6}$										
$\therefore pH = -Log_{10}([H_3O^+]) - Log_{10}(5.9439 \times 10^{-6}) = 5.2259 \approx 5.23 \text{ to } 2 \text{ d.p.}$										

(2)

(2)

Check assumption: 5% of $6 \times 10^{-3} = 3 \times 10^{-4}$ and since $x \approx 5.9 \times 10^{-6}$, $x \ll 5\%$ of 6×10^{-3} and the assumption is justified.

- 2) The hypochlorite ion (ClO⁻) is a weak base in water. The base dissociation constant for this ion in water is 3.58×10^{-7} at 25° C.
 - a) Write the equation for the base dissociation of this ion in water. Label the conjugate acid of this base in the equation.

$$ClO^{-}(aq) + H_2O(l) \Rightarrow HClO(aq) + OH^{-}(aq)$$

conjugate
acid

(2)

- b) Household bleach is a solution of sodium hypochlorite in water, typically 2.5%. This means that 100 cm³ of solution contains 2.5 g of sodium hypochlorite, Na⁺ClO⁻.
 - i) Calculate the molarity of 2.50% sodium hypochlorite solution. (RAM of Na=22.99, Cl=35.45, O=16.00.) (3)

Molar mass of NaClO = $22.99 + 35.45 + 16.00 = 74.44 \text{ g mol}^{-1}$

$$\therefore 2.50 \, g = \frac{2.50 \, g}{74.44 \, g \, mol^{-1}} = 0.033584...\,\mathrm{mol}$$

- - -

but $2.50 \,\mathrm{g}$ is present in $100 \,\mathrm{cm}^3$ of solution.

 $\therefore \text{ Molarity of } 2.50\% \text{ sodium hypochlorite} = \frac{0.033584...\text{mol}}{0.1 \text{ dm}^3} = 0.33584...\text{mol} \text{ dm}^{-3}$

$$\approx 0.336 M$$
 to 3 s.f.

ii) Calculate the pH of 2.50% sodium hypochlorite solution (bleach) at 25°C. (NB. The sodium ion has no appreciable acidic or basic properties and need not be considered.)

	ClO ⁻ (aq)	+	H ₂ O(1)	4	HClO(aq)	+	OH ⁻ (aq)
Initial /M	0.33584				0		~0
Change /M	-x				+x		+x
Equilibrium /M	0.33584 - x				x		x

The base dissociation constant of the hypochlorite ion, ClO⁻ is $K_b = 3.58 \times 10^{-7}$

 $\therefore K_{b} = \frac{[HClO]}{[ClO^{-}][H_{3}O^{-}]} = \frac{x^{2}}{0.33584 - x}$ and assuming x < 5% of 0.33584 $x = \sqrt{0.33584K_{b}} = \sqrt{0.33584 \times 3.58 \times 10^{-7}} = 3.46743... \times 10^{-4}$ $\therefore pOH = -Log_{10}[OH^{-}] = Log_{10}(x) = Log_{10}(3.46743... \times 10^{-4}) = 3.4599...$ But pH + pOH = 14.00 @ 25° C \therefore pH = 14 - 3.459992276... = 10.5400 ≈ 10.54 to 2 d.p. Check assumption: 5% of $0.33584 \approx 1.68 \times 10^{-2}$ and since $x \approx 3.5 \times 10^{-4}$, x << 5% of 0.33584and the assumption is justified.