Chemistry 225 Semester 04-2016 Homework for Submission \#3 -Answer Key

1) a) $K=\frac{\left[\mathrm{Mn}^{2+}\right]\left[\mathrm{Fe}^{3+}\right]^{5}}{\left[\mathrm{Fe}^{2+}\right]^{5}\left[\mathrm{MnO}_{4}^{-}\right]\left[\mathrm{H}^{+}\right]^{8}}$
(1 mark)
b) $\quad K=\frac{\left(p_{\mathrm{H}_{2} \mathrm{O}}\right)^{4}}{\left(p_{\mathrm{H}_{2}}\right)^{4}}$
(1 mark)
c) $\quad K=\frac{\left[\mathrm{Fe}^{3+}\right]^{2}\left[\mathrm{Cr}^{3+}\right]^{2}}{\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right]\left[\mathrm{H}^{+}\right]^{14}}$
(1 mark)
d) $\quad K=p_{C_{2} H_{5} \mathrm{OH}(\mathrm{g})}$
(1 mark)
Note: Unless K_{c} is specified, gases are always represented by partial pressures in the equilibrium expression.
2) Hydrogen iodide and iodine are introduced into a sealed vessel at a temperature at which both are gases and allowed to react until equilibrium is reached. Sketch:
a) a graph of concentration against time showing the concentrations of hydrogen, iodine and hydrogen iodide.

(3 marks)
The reaction is, of course: $2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$, which we have met frequently in class. The concentrations of I_{2} and HI are non-zero to begin with, whereas that of H_{2} is zero. This latter means that the reverse reaction cannot occur at the beginning, and only the forward reaction occurs, so that the concentration of HI decreases, and the concentrations of H_{2} and I_{2} increase. Eventually equilibrium is reached and there is no further change in concentrations. Reaction is most rapid at the beginning, meaning that the
lines slope steeply. The decrease in concentration of HI is twice the rise in the concentration of I_{2}, which is equal to the rise in concentration of H_{2}, because of the stoichiometry of the equation $(2: 1: 1)$.
(The curves were produced mathematically using Excel assuming the reactions are first order, and then copied into a drawing program to produce the final graphs.)
b) a second graph showing both the rate of production of hydrogen iodide (one curve) and the rate of its reaction (ie. destruction - a second curve) as a function of time.

(3 marks)
There is no H_{2} to begin with, so the rate of production of HI must be zero, whilst the rate of its destruction is at its maximum, since its concentration is at its maximum. As HI is turned into H_{2} and I_{2} the reverse reaction, leading to the production of HI , can get started. Eventually equilibrium is reached at which stage the rates are equal. However, there is no reason to suppose that the rates are equal to half the initial rate of production of HI .
3) a) An equilibrium mixture contains 0.0200 mol of bromine, 0.0125 mol of hydrogen and 0.00050 mol of hydrogen bromide at a fixed temperature. Determine the equilibrium constants $\left(\mathrm{K}_{\mathrm{c}}\right)$ for the reactions represented by
i) $2 \mathrm{HBr}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})$
ii) $1 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{Br}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{HBr}(\mathrm{g})$
and determine the mathematical relationship between these constants.
Hint: let the volume of the container be $\mathrm{V} \mathrm{dm}^{3}$.

Solution

Note that equilibrium expressions require concentrations, not numbers of moles. Students must demonstrate that they are aware of this in order to obtain a good mark. Note also that whilst the volume of the container cancels in this case, it is not usually so.

$$
K_{C i}=\frac{\left[H_{2}\right]\left[B r_{2}\right]}{[H B r]^{2}}=\frac{\left(\frac{0.0125}{V}\right)\left(\frac{0.0200}{V}\right)}{\left(\frac{0.0005}{V}\right)^{2}}=\frac{0.0125 \times 0.02}{0.0005^{2}}=\frac{2.5 \times 10^{-4}}{2.5 \times 10^{-7}}=\underline{\underline{10000}}
$$

$$
K_{C i i}=\frac{[\mathrm{HBr}]}{\left[\mathrm{H}_{2}\right]^{1 / 2}\left[\mathrm{Br}_{2}\right]^{1 / 2}}=\frac{\left(\frac{0.0005}{V}\right)}{\left(\frac{0.0125}{V}\right)^{1 / 2}\left(\frac{0.02}{V}\right)^{1 / 2}}=\frac{0.0005}{\sqrt{0.0125} \times \sqrt{0.02}}=\frac{5 \times 10^{-4}}{\sqrt{2.5 \times 10^{-4}}}=\frac{\sqrt{25} \times 10^{-4}}{\sqrt{2.5} \times 10^{-2}}=\sqrt{\frac{25}{2.5}} \times 10^{-2}
$$

$$
=10^{-2} \sqrt{10} \text { or } \underline{\underline{0.032}} \text { to } 2 \text { s.f.) }
$$

The mathematical relationship between the equilibrium constants Kci and Kcii can be seen from the previous answers:

$$
\begin{equation*}
K_{C i}=\frac{1}{\left(K_{C i i}\right)^{2}} \tag{1mark}
\end{equation*}
$$

b) In another experiment conducted at this same temperature, some HBr was admitted into an evacuated $2000 \mathrm{~cm}^{3}$ vessel and when equilibrium was attained some had decomposed yielding 6.32 mol of bromine as one product. What was the concentration of each species present at equilibrium? (5 marks)

Solution

The equation is:

$$
2 \mathrm{HBr} \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})
$$

whose equilibrium constant is $K_{C i}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{Br}_{2}\right]}{[\mathrm{HBr}]^{2}}=1000$ since this is the same reaction at the same temperature as part (a)(i). (Note: the other equation could be used just as well.)

We build up the "ICE" table ${ }^{1}$ in terms of moles, representing the initial concentration of HBr by a.

	$2 \operatorname{HBr}(\mathrm{~g})$	\rightleftharpoons	$\mathrm{H}_{2}(\mathrm{~g})$	$\operatorname{Br}_{2}(\mathrm{~g})$
Initial $/ \mathrm{M}$	a		0	0
Change $/ \mathrm{M}$	-2 x		+x	+x
Equilibrium $/ \mathrm{M}$	$a-2 \mathrm{x}$		x	x

The volume of the container is $2000 \mathrm{~cm}^{3}=2 \mathrm{dm}^{3}$. Since the equilibrium number of moles of Br_{2} is 6.32 , the equilibrium concentration of Br_{2}, in $\mathrm{mol} \mathrm{dm}^{-3} \mathrm{x}=6.32 / 2=3.16$ and so
$K_{C i}=1000=\frac{\left[H_{2}\right]_{e}\left[B r_{2}\right]_{e}}{[H B r]_{e}{ }^{2}}=\frac{(x)(x)}{(a-2 x)^{2}}=\frac{(3.16)^{2}}{(a-2 x)^{2}}$
$\therefore a-2 x=\sqrt{\frac{(3.16)^{2}}{1000}}=0.099927$
This is the equilibrium concentration of HBr and so, to summarise to 2 significant figures ${ }^{2}$, at equilibrium:

$$
[\mathrm{HBr}]=0.10 \mathrm{M},\left[\mathrm{Br}_{2}\right]=\left[\mathrm{H}_{2}\right]=3.2 \mathrm{M}
$$

4) A 0.831 g sample of SO_{3} is placed in a 1.00 L container and heated to 1100 K . The SO_{3} decomposes to SO_{2} and O_{2} according to the following equation:

[^0]$$
2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

At equilibrium the total pressure in the container is 1.300 atm . Find the value of K_{p} for this equilibrium at 1100 K . (Hint: develop your table in terms of partial pressures and recall the relationship between total pressure and partial pressures for a mixture.)
\# of moles of $\mathrm{SO}_{3}=0.831 \mathrm{~g} \div(32.065+3 \times 15.999) \mathrm{g} \mathrm{mol}^{-1}=0.831 \div 80.062 \mathrm{~mol}$ But $\mathrm{PV}=\mathrm{nRT}$
Hence initial pressure of the SO_{3} at 1100 K is
$P=\frac{n R T}{V}=\frac{\frac{0.831}{80.062} \times 0.0821 \times 1100}{1}=0.937369 \mathrm{~atm}$

	$2 \mathrm{SO}_{3}$	$2 \mathrm{SO}_{2}$	O_{2}
Initial / atm	0.937369	0	0
Change $/ \mathrm{atm}$	-2 x	+2 x	+x
Equilibrium / atm	$0.937369-2 \mathrm{x}$	2 x	x

But total equilibrium pressure $=1.300 \mathrm{~atm}=0.937369-2 \mathrm{x}+2 \mathrm{x}+\mathrm{x}=0.937369+\mathrm{x}$
$\therefore \mathrm{x}=1.3-0.937369=0.362631 \mathrm{~atm}$
$\therefore \mathrm{K}_{\mathrm{p}}=\frac{\left(P_{\mathrm{SO}_{2}}\right)^{2}\left(P_{\mathrm{O}_{2}}\right)}{\left(P_{\mathrm{SO}_{3}}\right)^{2}}=\frac{(2 x)^{2}(x)}{(0.937369-2 x)^{2}}=\frac{4 \times 0.362631^{3}}{(0.937369-2 \times 0.362631)^{2}}=4.23985=\underline{\underline{4.24} \text { to } 3 \mathrm{sf}}$
(Recall that equilibrium constants are unitless.)

[^0]: ${ }^{1}$ We don't really need the ICE table in this case, but it helps to see what is going on.
 ${ }^{2} 2$ significant figures because the equilibrium constant used was determined using a number of moles of hydrogen given to 1 significant figure. Strictly speaking the answer should be presented to 1 significant figure also, but we never normally round to 1 significant figure.

