Section A: Multiple Choice. Answer all questions.

(1 mark each)

For each question, select the best answer and shade the letter corresponding to this answer on the answer sheet provided.

- 1) An isotope of the element rubidium, symbol Rb, has 37 protons and 48 neutrons in the nucleus. The symbol for this isotope may be written:
- a) 37 Rb 48
- b) Rb
- c) ₄₈Rb
- d) ${}^{85}_{37}$ Rb
- e) 85Rb37
- 2) If a neutral atom has a mass number of 40 and an atomic number of 19, how many electrons surround the nucleus?
- a) 40
- b) 19
- c) 59
- d) 60
- e) 21
- 3) The formula S_8 represents:
- a) An element.
- b) A compound.
- c) A mixture.
- d) A solution.
- e) An atom.
- Which one of the following statements regarding a liquid being cooled is NOT true?
- a) Molecular motion gets slower.
- b) The molecules get further apart.
- c) The liquid gets denser.
- d) The temperature decreases.
- e) The forces between molecules get stronger.

- 5) 1 dm³ is the same as:
- a) 10000 cm^3
- b) 10 cm^3
- c) 100 cm^3
- d) 0.001 cm^3
- e) 1000 cm^3
- (6) A single covalent bond between two atoms involves:
- a) One electron.
- b) Two electrons.
- c) Three electrons.
- d) Four electrons.
- e) No electrons.
- 7) The outer shell of the least reactive atoms generally contains:
- a) 4 electrons.
- b) 8 electrons.
- c) 6 electrons.
- d) 1 electron.
- e) No fixed number of electrons.
- 8) When a drop of bromine is placed in the bottom of a gas jar, the colour of the gas gradually spreads throughout the jar. This process is known as
- a) Brownian motion
- b) Chemical reaction
- c) Evaporation
- d) Osmosis
- e) Diffusion
- 9) A gas at STP has a temperature and pressure respectively, of
- a) 1°C and 1 atm
- b) 273°C and 1 atm
- c) 0 K and 1 atm
- d) 273K and 1 atm
- e) 0°C and 273 atm

Question 10 to 12 involves the following information about certain chlorides. In each case the real symbol for one of the elements has been replaced by one of the letters A to G.

Chloride	Melting Point/°C	Boiling Point/°C
ACl	810	1350
BCl ₃	-29	71
CCl	-154	-101
DC1 ₄	-68	70
ECl ₂	-81	59
FCl ₂	640	1940
GCl	590	968

- 10) Which one of the following substances would normally be liquid at room temperature?
- a) CCl
- b) ACl
- c) DCl₄
- d) FCI₂
- e) GCl
- 11) Which one of the following substances would normally be expected to be a solid at room temperature?
- a) BC1₃
- b) DC1₄
- c) ECl₂
- d) CCI
- e) FCl₂
- 12) Which one of the following substances is most likely to be ionic?
- a) BCl₃
- b) GCl
- c) CC1
- d) DCl₄
- e) ECl₂

- 13) Which of the following acids has a proticity of 3?
- a) HNO₃
- b) H₃PO₄
- c). CH₃COOH
- d) H₂SO₄
- e) HCl
- 14) A base is a substance that
- a) Turns blue litmus red.
- b) Reacts with an acid to form a salt.
- c) Gives off hydrogen gas when mixed with water.
- d) Contains only a few basic atoms.
- e) Provides a good foundation for a chemical reaction.
- 15) The pH of a solution of HCl chloride would most likely be about:
- a) 7
- b) 13
- c) 6.5
- d) 1
- e) 3
- 16) Which one of the following equations is not balanced correctly?
- a) $3O_2 \rightarrow 2O_3$
- b) $3\text{Fe} + 20_2 \longrightarrow \text{Fe}_3\text{O}_4$
- c) $Cu + 2AgNO_3 \rightarrow Cu(NO_3)_2 + 2Ag$
- d) $Na_2O_2 + H_2O \rightarrow 2NaOH + O_2$
- e) $3H_2+N_2 \rightarrow 2NH_3$

17) Analysis of a sample of magnesium oxide shows that it contains 1.52 g of magnesium for each gram of oxygen. If a second sample of the same oxide contains 13.91 g of magnesium, how much oxygen does this second sample contain?

1039

- a) 0.109g
- b) 1.00g
- c) 9.15g
- d) 21.lg
- e) 0.0915g
- 18) The ratio of the number of bismuth atoms to the number of oxygen atoms in Bi₂(SO₄)₃ is
- a) 2:1
- b) 2:3
- c) 2:7
- d) 1:2
- e) 1:6
- 19) Which of the following atoms forms an anion in ionic compounds?
- a) Ba
- b) Be
- c) Br
- d) K
- e) C
- 20) Sulfur and hydrogen are both substances which consist of molecules. Sulfur melts at 115°C and hydrogen melts at -259°C. The forces of attraction between the molecules must therefore be:
- a) Much weaker in sulfur than in hydrogen
- b) A little stronger in sulfur than in hydrogen.
- c) Almost equally strong in both hydrogen and sulfur.
- d) Almost equally weak in both hydrogen and sulfur.
- e) Much stronger in sulfur than in hydrogen.

- 21) At 300K a certain sample of gas occupies 1 dm³ At 600K and the same pressure the same mass of gas would occupy:
- a) $0.5 \, \text{dm}^3$
- b) $600 \, \text{dm}^3$
- c) 2dm³
- d) $300 \, dm^3$
- e) $301 \, \text{dm}^3$
- 22) 300° C is the same as
- a) 573K
- b) 273K
- c) 27K
- d) 0K
- e) -300K
- 23) The valency of an element X is 3 and of element Y is 4. A compound of X and Y would be expected to have the formula:
- a) XY
- b) X₂Y
- c) X₃Y₄
- d) X_4Y_3
- e) X₃Y
- 24) Copper (II) Sulfate is so-called because
- a) It contains two copper atoms.
- b) The valency of copper is 2.
- c) It contains twice as much cooper as sulfate.
- d) The relative atomic mass of copper is 2.
- e) The sulfate ion has a charge of 2.
- 25) The term iodide is used in preference to iodine when:
- a) Iodine is in the free form.
- b) Iodine is mixed with salt.
- c) Iodine has been sublimed.
- d) Iodine is used as an antiseptic.
- e) Iodine is combined with another element.

- 26) The diatomic gases H_2 , O_2 and N_2 are considered to be
- a) elements
- b) compounds
- c) atoms
- d) mixtures
- e) alloys
- 27) Most of the mass of an atom is occupied by the.
- a) Nucleus
- b) Protons
- c) Neutrons
- d) Electrons
- e) Ions
- 28) Element X is a group II metal in period 3. What would the electron configuration of this element be?
- a) 2,8,1
- b) 2,8,2
- c) 2,8,8,2
- d) 2,8,3
- e) 2,3

- 29) Which of the following properties most likely indicates an ionically bonded compound?
- a) solid, with a high melting point
- b) colorless liquid
- c) boils at -61 °C
- d) no conducting aqueous solution
- e) reacts slowly in water
- 30) The correct statement about salts are compounds that:
- a) Are all soluble in water.
- b) Are all insoluble in water.
- c) Contains H^t ions in solution.
- d) Contain metal ions or metallic groups and negative non-metal ions.
- e) Are acidic in content.

SECTION B: SHORT ANSWER QUESTIONS (63 MARKS)

Answer each of the following questions in the spaces provided.

1)			
a)	Write the chemical names for each of the following substances. (5 MARKS)		
i)	Mg (OH) ₂		
ii)	NaNO ₃		
iii)	FeSO ₄		
iv)	H_2SO_4		
v)	Al_2O_3		
b)	Write formulae for the following substances. (5 MARKS)		
i)	lead (II) nitrate		
ii)	Nitrogen dioxide gas		
iii)	Potassium hydrogen carbonate		
iv)	Ammonium sulphate		
v)	Copper (I) oxide		
c)	Write balanced chemical equations, including state symbols, to illustrate what happens when		
(i)	A piece of sodium metal is dropped into cold water. (2 Marks)		

(iii) Sodium hydroxide, NaOH (aq) is added to aqueous copper (II) sulphate, CuSO₄ to form sodium sulphate and copper II hydroxide (3 Marks)

2) Fill in the following table: (7 marks)

(ii) Magnesium ribbon burns in air. (2 Marks)

Symbol of	Name of	Mass	Number of	Number of	Number of	Electronic
atom or ion	element	number	protons	neutrons	electrons	config'n
³⁴ S ⁻²						
10						
		2	1			0
				1		
	sodium	23	11			
				·		
	L					

3) Glycin is a crystal¹:ne solid which melts at 246°C. Trirnethylene glycol is a clear colourless solution which melts at -30°C and boils at 215°C.

(i) Why would trimethyle (2 MARKS)	ene glycol not be suitable for a m	elting point determination of glycin?		
Name	Melting point °C	Boiling point (°C)		
A. decyl alcohol	6	228		
B. ethylene glycol	-12.6	197		
C. glycerol	18	290		
D. propylene	-59	187		
determine the melting poi	etter for a liquid which would be nt of glycin. Explain your reason	ning. (2 MARKS)		
Why? (2 MARK)	a thermometer with a scale rangi	ng from 0 -100°C in this experiment?		
-				
solids from tubes A and B	melts over the range 130 to 139 ut the identities of the solids in to	,		
b) What can you say abo	ut the identities of the solids in to	ubes A and C?		
c) What can you say abo	ut the identities of the solids in t	ubes B and C?		
4) Define each of the	following using a named examp	le of each. (8 Marks)		
a) Acid				
1.) D				
b) Base				
	P CARLON TO THE PARTY OF THE PA			

Page 7

Semester 012004

CHEM 071 – Final Exams

END OF EXAMINATION